IPNet Digest Volume 5, Number 11 November 30, 1998 Today's Editor: Patricia K. Lamm Michigan State University Today's Topics: Call for Papers: Conference on Problems in Mathematical Imaging Call for Papers: Special Issue, Linear Algebra & Applications Position: Montana State University Table of Contents: Inverse Problems Table of Contents: Advances in Computational Mathematics Submissions for IPNet Digest: Mail to ipnet-digest@math.msu.edu Information about IPNet: Mail to ipnet-request@math.msu.edu http://www.mth.msu.edu/ipnet ------------------------------ From: Joachim Weickert Subject: Call-for-papers on mathematical imaging Date: Wed, 25 Nov 1998 We are currently organizing the Second International Conference on Scale-Space Theories in Computer Vision (Corfu, Sept. 26-27, 1999). It is devoted to a broad range of regularization and restoration methods in mathematical imaging. Below is the call-for-papers. Thank you very much in advance. On behalf of the programme board of Scale-Space '99, Joachim Weickert *************** Second International Conference on Scale-Space Theories in Computer Vision: Geometric Image Flows, Nonlinear Diffusion, Functional Minimisation, and Linear Scale-Space Corfu, Greece September 26-27, 1999 In conjunction with ICCV '99 Scale-Space '99, Call For Papers Scale-space theory has developed into an important branch of multiscale techniques. The foundations are mathematically well established, and its applications cover all areas of digital imaging. Scale-Space '99 is a forum for presentation of advances in scale-space theories in computer vision. It is the successor of Scale-Space '97, held in Utrecht. The emphasis is on partial differential equations and variational techniques for image analysis, and their applications in industry and medicine. SCOPE: Methods: Geometric image flows, level set methods, continuous-scale morphology, nonlinear diffusion, functional minimisation, total variation methods, regularisation, linear scale-space, multi-channel evolutions. Special Topics of Interest: Axiomatic foundations, invariances, well-posedness, generalised solutions, approximation and convergence, discrete theories, fast algorithms, deep structure, singularity theory, evolution properties, unification of theories, interrelations of methods. Applications: Shape analysis, segmentation, reconstruction, motion, stereo, matching and registration, colour image analysis, feature detection, scale selection, medical applications, industrial applications. SUBMISSION PROCEDURES Authors are invited to submit four (4) copies of original so far unpublished papers for oral or poster presentation. Papers must be no longer than 12 pages in the Springer Lecture Notes in Computer Science format plus a cover sheet stating: (1) paper title, (2) key words, (3) name, address, fax, and e-mail address of the contact author. Due to the tight publishing schedule, papers must be at the conference secretariat no later than April 8th, 1999: Scale-Space '99 Department of Computer Science University of Copenhagen Universitetsparken 1 DK-2100 Copenhagen, Denmark E-Mail: scalespace99@diku.dk All submissions will be reviewed by three members of the programme committee. PROCEEDINGS Proceedings will be published in the series Lecture Notes in Computer Science, Springer Verlag. LaTeX style files may be obtained at http://www.springer.de/comp/lncs/. It is planned to publish a selection of the best papers in a special issue of an international journal. IMPORTANT DATES Paper proposals due April 8, 1999 Notification of Acceptance May 31, 1999 Camera-ready papers due July 1, 1999 Conference September 26-27, 1999 ADDITIONAL INFORMATION Additional information on Scale-Space '99 may be obtained at http://www.diku.dk/scalespace99/. GENERAL BOARD Mads Nielsen Olivier Faugeras Pietro Perona Bart ter Haar Romeny Guillermo Sapiro PROGRAMME BOARD Mads Nielsen Joachim Weickert Peter Johansen Ole Fogh Olsen PROGRAMME COMMITTEE Luis Alvarez Rein van den Boomgaard Alfred Bruckstein Vicent Caselles Tony Chan James Damon Rachid Deriche Luc Florack Lewis Griffin Frederic Guichard Ben Kimia Ron Kimmel Jan Koenderink Tony Lindeberg Ravi Malladi Farzin Mokhtarian Wiro Niessen Eric Pauwels Steve Pizer Joachim Rieger Christoph Schnoerr Jayant Shah Jon Sporring Luc Van Gool ------------------------------ From: Hans Schneider Subject: Special issue of LAA Date: Thu, 5 Nov 1998 Linear Algebra and its Applications (LAA) Special issue on LINEAR ALGEBRA IN SELF-VALIDATING METHODS The goal of self-validating methods is to compute correct results on digital computers - correct in a mathematical sense, covering all errors like representation, discretization, rounding errors or others. These methods have a connection to linear algebra since problems are frequently transformed into linearized problems with uncertain data. Then the linearization and discretization errors are estimated, possibly together with an infinite dimensional part of the problem. It has turned out that computation of an inclusion of the solution complex of even a linear system of equations with uncertain data is NP-hard. This has given rise to interesting connections between self-validating methods and complexity theory. Despite this, in many cases a reasonably sharp inclusion can be calculated. The class of problems being solvable in this sense has been extended in recent years. The possibility to estimate the range of a function is a main ingredient of self-validating methods. Beside the naive way to get error bounds by replacing every operation by the corresponding interval operation, much more elaborate methods have come up using gradients, slopes, lp- and qp-approaches and more. In the past few decades the area of self-validating methods has been evolving, with rapidly growing number of researchers. We want to take this opportunity to publish a special issue on self-validating methods. A preliminary list of topics would include: - systems of linear equations and inequalities - range of functions - complexity theory for problems with uncertain data - componentwise distance to singularity and/or stability - sparse systems of equations - algebraic eigenvalue problems - iterative methods - matrix methods in validation methods for differential equations - use of M-matrices and H-matrices in validation methods - analysis of zeros and connection to controllability - combination of computer algebra with floating point methods. This is a sample, but not an exclusive list of topics. If there is doubt about suitability of a particular paper, contact one of the editors of the special issue. Please submit three (3) hard copies to one of the special issue editors listed below. The deadline for submission is SEPTEMBER 30, 1999. Jiri Rohn Faculty of Mathematics and Physics Charles University Malostranske nam. 25 118 00 Prague Czech Republic e-mail: rohn@uivt.cas.cz Siegfried M. Rump Inst. f. Computer Science III Technical University Hamburg-Harburg Eissendorfer Str. 38 21071 Hamburg, Germany e-mail: rump@tu-harburg.de Tetsuro Yamamoto Department of Mathematics Faculty of Science Ehime University Matsuyama 790, Japan e-mail: yamamoto@dpc.ehime-u.ac.jp Submitted by: Hans Schneider hans@math.wisc.edu. Department of Mathematics 608-262-1402 (Work) Van Vleck Hall 608-271-7252 (Home) 480 Lincoln Drive 608-263-8891 (Work FAX) University of Wisconsin-Madison 608-271-8477 (Home FAX) Madison WI 53706 USA http://www.math.wisc.edu/~hans (URL) ------------------------------ From: Isaac Klapper Subject: Position at Montana State University Date: Wed, 11 Nov 1998 DEPARTMENT OF MATHEMATICAL SCIENCES MONTANA STATE UNIVERSITY The Department of Mathematical Sciences at Montana State University invites applications for a tenure-track position at the Assistant Professor level to begin in August 1999 contingent on funding. The Department is research oriented with an active graduate program and ties to the Center for Biofilm Engineering, the Center for Computational Biology, and other departments on campus. Research funding within the department is currently approximately $1,000,000 per year. The teaching load is two courses per semester. The Department is seeking a candidate whose research interests mesh well with current faculty. The Department has active research groups in the areas of computational mathematics, applied mathematics, mathematical biology, and dynamical systems. Preference will be given to applicants with computational interests. Montana State University is located in Bozeman, Montana, between the Bridger and Gallatin mountains. Yellowstone National Park is approximately 90 miles away. Requirements: PhD in the mathematical sciences, evidence of strong research potential and excellent teaching skills. Screening of applications commences January 1, 1999 and will continue until the position is filled. Send a letter of application together with a statement of current and planned research, a statement of teaching philosophy and qualifications, a vita, and three letters of recommendation to: Mathematics Hiring Committee Department of Mathematical Sciences Montana State University Bozeman, MT 59717-2400 Tel. (406)-994-3603 For additional information see http://www.math.montana.edu/temp/new_position.html or write to Professor John Lund, or send e-mail to: hire@math.montana.edu ADA/AA/EEO. Veterans preference. Claim veteran's preference or request accommodation from HR/AA, MSU, Bozeman, MT 59717 [(406)-994-2042 or TDD (406)-994-4191] ------------------------------ From: "Janet Thomas" Subject: Contents list for Inverse Problems vol 14, no 6 Date: Wed, 25 Nov 1998 Inverse Problems December 1998 Volume 14, Issue 6 Table of Contents NOTE FROM THE EDITORIAL BOARD LETTER TO THE EDITOR Non-abelian integrable systems of the derivative nonlinear Schrodinger type P J Olver and V V Sokolov PAPERS Equations of the reaction-diffusion type with a loop algebra structure E Alfinito, V Grassi, R A Leo, G Profilo and G Soliani The Cauchy problem for the sinh-Gordon equation and regular solitons A Boutet de Monvel, E Ya Khruslov and V P Kotlyarov Stability and reconstruction for an inverse problem for the heat equation K Bryan and L F Caudill Jr Iterative algorithms for deblurring and deconvolution with constraints C Byrne Tomography of objects with a priori known internal geometry T E Gureyev and R Evans Spectral difference equations satisfied by KP soliton wavefunctions A Kasman Characterization of the shape of the scattering obstacle using the spectral data of the far field operator A Kirsch A variational algorithm for electrical impedance tomography I Knowles Best L^2 Tikhonov analogue for Landweber iteration G A Latham Special regularizing methods for ill-posed problems with sourcewise represented solutions A S Leonov and A G Yagola A quasilinearization approach for parameter identification in a nonlinear model of shape memory alloys P Morin and R D Spies On uniqueness for anisotropic inhomogeneous inverse scattering problems M Piana Can Markov chain Monte Carlo be usefully applied to stochastic processes with hidden birth times? E Renshaw and G J Gibson On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hilbert scales U Tautenhahn AUTHOR INDEX (with titles), volume 14 Why not visit the Inverse Problems home page at http://www.iop.org/Journals/ip? Submitted by: Janet Thomas Production Editor Institute of Physics Publishing Dirac House, Temple Back, Bristol BS1 6BE, UK Tel: +44 (0)117 930 1081 Fax: +44 (0)117 929 4318 E-mail: janet.thomas@ioppublishing.co.uk WWW: http://www.iop.org ------------------------------ From: Baltzer Science Subject: Advances in Computational Mathematics contents Date: Wed, 25 Nov 1998 Advances in Computational Mathematics 1998 Volume 9-3,4 Table of Contents On the approximation power of bivariate splines Ming-Jun Lai and Larry L. Schumaker Automatic domain decomposition on unstructured grids (DOUG) M.J. Hagger An explicit norm representation for the analysis of multilevel methods Gero Nie=DFen A note on fast Fourier transforms for nonequispaced grids Gabriele Steidl Tensor-product monotonicity preservation Michael S. Floater and J.M. Pe=F1a Singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel Hideaki Kaneko, Richard D. Noren and Peter A. Padilla Smoothness of subdivision surfaces at extraordinary points Hartmut Prautzsch Fortran codes for computing the discrete Helmholtz integral operators S.M. Kirkup More information about contents, submission and preparation of papers can be found on http://www.baltzer.nl/adcom/ Please direct enquiries about subscription and other issues to=20 subscribe@baltzer.nl Sincerely, Baltzer Science Publishers ------- end -------